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Abstract—Significant efforts have been investigated to develop
machine learning (ML) based tools to support security op-
erations. However, they still face key challenges in practice.
A generally perceived weakness of machine learning is the
lack of explanation, which motivates researchers to develop
machine learning explanation techniques. However, it is not
yet well understood how security practitioners perceive the
benefits and pain points of machine learning and corresponding
explanation methods in the context of security operations. To
fill this gap and understand “what is needed”, we conducted
semi-structured interviews with 18 security practitioners with
diverse roles, duties, and expertise. We find practitioners gener-
ally believe that ML tools should be used in conjunction with
(instead of replacing) traditional rule-based methods. While
ML’s output is perceived as difficult to reason, surprisingly,
rule-based methods are not strictly easier to interpret. We also
find that only few practitioners considered security (robustness
to adversarial attacks) as a key factor for the choice of
tools. Regarding ML explanations, while recognizing their
values in model verification and understanding security events,
practitioners also identify gaps between existing explanation
methods and the needs of their downstream tasks. We collect
and synthesize the suggestions from practitioners regarding
explanation scheme designs, and discuss how future work can
help to address these needs.

1. Introduction

In the past decades, researchers and industry practi-
tioners have taken significant steps toward designing and
developing machine learning based tools to support security
operations. Example applications include network [1]–[4]
and host [5], [6] based intrusion detection, malware classifi-
cation [7], [8], provenance-based attack forensics [9], [10],
and alert correlation and prioritization [11]–[13].

Despite the perceived advantages in accuracy and scal-
ability, machine learning based tools face challenges when
deployed. For example, the explainability problem [14]–[17]
is well recognized. That is, most machine learning models
(especially deep learning models) work as a “black box”, the
outputs of which cannot be easily interpreted by humans.
A recent SANS survey found that while some security

operations centers (SOCs) have deployed machine learning-
based tools, they are not rated among the most effective [18].

More recently, the machine learning and the secu-
rity communities have investigated machine learning ex-
planations to improve machine learning based tools’ us-
ability [14]–[17], [19]–[21]. For example, an explanation
method can highlight key features in a binary (e.g., specific
bytecode gadgets, API calls) to explain its classification as
malware. However, most existing efforts focus on designing
technical solutions to generate accurate and robust explana-
tions, without proactively engaging stakeholders who use,
manage, or implement these tools in the field.

In this paper, we aim to fill this gap by exploring security
practitioners’ perceptions of machine learning based security
tools and the corresponding explanation methods. The goal
is to provide a deeper understanding of “what is needed”
and facilitate further research into usable machine learning
and explanation methods for security operations. We seek
to answer three main research questions:
RQ1 Where and how is machine learning used in security

operations centers (SOC)?
RQ2 What are the perceived benefits and challenges in us-

ing machine learning in practical security operations?
RQ3 How are existing machine learning explanation tech-

niques perceived in practical security operations?
To answer these research questions, we conducted semi-

structured interviews with 18 security practitioners with
diverse roles, duties, and expertise, including front-line an-
alysts who first respond to active security alerts, SOC and
incident response team leads, academics who contract with
industry, and upper-level management in organizations that
produce production tools and services. During the interview,
we asked participants about their experience with classifi-
cation tools and use of machine learning, their perceptions
of verifying and taking actions based on the tools’ output,
and the value and problems with explanation methods.
Key Findings. Our study has the following findings.

First, while usability is perceived by the research com-
munity as the primary deterrent to ML adoption in secu-
rity [14]–[17], [22], [23], we find the majority of participants
still regarded ML tool effectiveness (i.e., the ability to pro-
duce correct classifications) as a key factor preventing tool
adoption. While practitioners were clear that ML brings sig-



nificant advantages as it can capture complex, subtle patterns
and reduce false negatives, false positives are perceived as
an overwhelmingly problematic downside in practice. As a
result, practitioners seek ML tools with low false positives
that can be deployed in parallel with rule-based tools to
maximize effectiveness.

Second, for usability, not surprisingly, it’s perceived dif-
ficult to reason about ML’s output, creating hurdles for reme-
diation actions. However, surprisingly, rule-based systems
are not strictly seen as easier to interpret, especially when
rules are complex or the analysts who need to understand
the rules (or their errors) are not the rules’ original creator.

Third, interestingly, few participants reported robustness
against adversarial attacks (i.e., security) as a key factor for
tool adoption. Further, evasion attacks on rule-based tools
were perceived as easier (versus ML tools), while poisoning
attacks were less concerning for rule-based tools.

Fourth, ML tools’ effectiveness depends on “less glam-
orous” tasks related to efficiency and adaptability (e.g.,
establishing data collection infrastructure, obtaining high-
quality data, labeling, model customization). Practitioners
find it hard to determine how much data to collect, how long
to keep historical data, and how to assess data usefulness.

Fifth, while existing explanation methods (e.g., high-
lighting features) are perceived as helpful to understand the
ML model and verify its correctness (goal 1), participants
also need explanation methods that provide context to under-
stand the security events and inform further actions (goal 2).
With abundant recent works devoted for goal-1 [15]–[17],
[19]–[21], [24]–[27], the result suggests that more work is
needed for goal-2 to by proactively engaging target users
(analysts) into the design process.

Sixth, by exploring participants’ perceptions of explana-
tions, we identified additional needs not covered by exist-
ing explanations including providing context and actionable
information by connecting current events of interest to pre-
vious events, providing visualization tools or natural lan-
guage interfaces that support interactive (spatial/temporal)
queries, methods that explain attacker behavior changes over
time, and explanations that are privacy-preserving. We also
identified some hesitancy toward explanation use, which
must be considered in future development, as participants
were concerned current explanations may cause information
overload or mislead analysts.

From these findings, we provide recommendations for
systematically interfacing ML and rule-based systems, ad-
dressing issues in ML-security tools’ supporting tasks, and
developing use-driven explanation tools.

2. Background and Related Work

Machine Learning Tools for Security Operation. Se-
curity operations broadly include detecting, analyzing, re-
sponding to security incidents, and improving the security
posture of an organization. These tasks are often carried
out by security professionals from a security operations
center (SOC) [28] with the help of different tools. Many of

such tools are machine learning based [7] such as network
intrusion detection systems (NIDS) [1], [2], [4], [29], host
intrusion detection systems (HIDS) [5], [6], provenance-
based threat hunting tools [9], [10], attack prediction mod-
els [30]–[32], and methods for aggregating threat intelli-
gence [33]. SOCs may use Security Information and Event
Management (SIEM) systems to integrate the alerts gener-
ated from various detection methods. Due to the high vol-
ume of (false) alerts, researchers have proposed methods for
alert filtering [34], [35], verification [36], correlation [11],
[12], [37] and prioritization [13], [38].
Human Factors in Security Operation. In addition to
tool development, researchers have studied human factors
in security operations. A main direction is focused on
the workflow of SOCs to explore the general challenges
faced by analysts [39]. Researchers have interviewed SOC
analysts to understand their perceptions of security mis-
configurations [40], strategies for malware analysis [41],
the “burnout” issues of SOC personnel [42], how people
and tools collaborate [43] and resolve contradictions [44],
and the problem of excessive security alerts (and false
alerts) [28], [39]. Compared to these studies, our work
has two main differences. First, these studies discussed
SOC tools in a general sense whereas our study explic-
itly focuses on machine learning-based tools and explores
their perceived differences from other tools (e.g., rule-based
methods). Second, we focus on the explainability (usability)
issues of machine learning tools, which are often not (or
only briefly) discussed in prior works.

Focusing on usability, a recent study [45] surveyed six
US Naval SOC analysts on two specific ML-based tools
for network security analysis. The study revealed usability
issues of these two tools (e.g., a lack of documentation,
inconsistent user interface design). We expand on this line
of inquiry by investigating issues with ML-based tools more
broadly. That is, we do not focus on a specific tool, and we
interview larger population of analysts drawn from a variety
of organizations and operational settings.
Machine Learning Explanation. Related to the us-
ability aspect discussed above, recently, researchers have
investigated various methods to explain machine learning
model behaviors and outcomes [46]. ML explanations can
either be intrinsic or post-hoc. Intrinsic explanation means
the ML model is self-explanatory in its decision-making,
e.g., trees [47], linear regression [48], and rule sets [49].
Post-hoc explanation has a separate model developed for
explanation purpose [19]–[21], [50]. Explanation methods
can also be categorized into global explanations and local
explanations. Global explanation focuses on explaining to
overall model behavior while local explanation focuses on
explaining individual decisions on specific inputs.

In the research community, the black-box nature of ML
is commonly perceived as the major hindrance towards its
adoption in security operations [14]–[17], [22], [23]. As
such, security researchers have worked to tailor explanation
methods for security applications [3], [15], [16], [25], [26],
understand the robustness of the explanation methods [27],



Explanation Brief Description Example

Highlighted Features A set of highlighted features that are most important in
determining the object’s classification.

File o is predicted as “malicious” due to a network-level
feature, i.e., sending requests to known C&C servers.

Prediction Confidence A numerical score describing the confidence of the
classification decision. File o is predicted as “malicious” with 90% confidence.

Similar Examples A set of other objects that share similar features with
the object of interest, and their classifications. File o is similar to three known malware files a, b, and c.

Highlighted Object History Highlighted historical data of the object that is
important to the classification decision.

A set of selective historical occurrences of file o
that were flagged in previous attacks.

TABLE 1: Exemplar Explanations – “Object” refers to an instance of interest in the attack such as a file, an IP address, a network
flow, or a process. The examples will be adapted based on participants’ familiar tasks/scenarios.

[51], and explore evaluation metrics [17]. However, these
efforts are still focused on model development, without yet
involving target users (e.g., security analysts) and real-world
security operations.

More recently, human-computer interaction researchers
tried to understand how explanation influences the trust
between human and ML models [52], and explore ways to
improve the understandability of ML explanations [53], [54].
However, most of the works focus on computer vision or
natural language processing (NLP) tasks instead of security
operation tasks, neglecting security-related idiosyncrasies
that may affect the value or use of ML explanations. Our
study fills the gap to provide a deeper understanding of
the perception of machine learning tools and explanation
techniques of security practitioners in their uniquely high-
risk and dynamically evolving environment.
Security of Machine Learning. Another related topic
is ML’s security/robustness against adversarial attacks [55],
[56]. Recent works have surveyed companies or developers
to understand their perceptions of adversarial machine learn-
ing [57]–[60]. Their results have revealed varied levels of
concerns about this threat; however, educational, technical,
and organizational barriers have prevented/discouraged wide
deployment of countermeasures [57]–[60]. Our study differs
in several dimensions: First, prior work investigates general
ML applications (e.g., computer vision, NLP), while we are
interested in ML-based security tools. Second, they inter-
view general data scientists, while we target SOC/security
practitioners. Finally, our study does not exclusively focus
on adversarial machine learning but contextualizes the secu-
rity concerns of ML in a larger swath of factors that affect
tool usage (e.g., effectiveness, usability).

3. Methodology

To answer our research questions, we conduct 18 semi-
structured interviews [61] with stakeholders who use, man-
age, design, or research related tools for security operations.
We primarily focus on tools designed for classification tasks,
i.e., classifying attack instances (e.g., malware, malicious
traffic, malicious websites/URLs) from benign instances
since it is the most common use case and exists within
an adversarial environment unique to security [2]. To
explore broad perceptions, we did not strictly define ML-
or rule-based methods for classification, but instead utilized

participants-provided definitions throughout the interview.
Participants broadly considered rule-based methods as those
that require human expertise to produce a set of explicit pat-
terns or signatures, and ML-based methods as those that can
automatically learn patterns/models from data. Our study
consists of two parts: a screening survey to select qualified
participants, and a one-hour semi-structured interview.

Screening Survey. Users first take a short screening
survey where we collect participants’ job titles, roles, in-
dustry sectors, years of experience in security, and whether
they focus on offensive or defensive security, or both (see
survey questions in our supplementary materials [62]). To
obtain a holistic view from practitioners, we do not limit
or control factors such as particular roles, organizations,
industry sectors, and demographics.

Eligibility. To ensure knowledgeable participants, we only
invite participants who are older than 18, with at least
one year of industry experience designing, managing, or
using security classification tools for interviews. We did
not enforce any requirements on the type of classification
tools participants used. Per IRB’s recommendation, due to
privacy laws (GDPR [63] and China’s PIPL [64]), we did not
recruit participants from European Economic Area (EEA)
or mainland China. GDPR and PIPL have more complex
consent requirements and data handling procedures that our
study/IRB did not readily support.

Semi-Structured Interview. Each participant was inter-
viewed about their experiences with classification tools over
a 60-minute online conference call. All interviews were con-
ducted in English. The interview consists of three primary
sections designed to answer each of our three research ques-
tions (the detailed questions are provided in supplementary
materials [62]). First, to understand how ML is used along-
side other tools within SOCs (RQ1), we ask participants
about their experience in using different tools. Second, to
understand how ML is perceived (RQ2), we ask participants
their perception of ML based tools (in comparison with
other tools) regarding their benefits and pain points. Lastly,
to understand the perception of ML explanation methods,
we ask participants whether and how various explanation
techniques may benefit them, and what information an
ideal system would provide them. For the last part, we
use exemplar explanation techniques (see Table 1) to probe
participants to think aloud about the questions on this topic.



We select these examples based on existing literature [14],
[46]. “Highlighted features”, “prediction confidence”, and
“highlighted history” are commonly discussed in machine
learning literature to provide explanations [24], [46], [50],
[65]. “Similar examples” are often used in security contexts
(e.g., code/function similarity for vulnerability analysis) to
assist threat investigation [66], [67].

To maintain consistency between interviews, the inter-
viewer followed a detailed guide of responsible procedures
such as how to begin and end the interview, ask questions
in a non-leading fashion, re-obtain consent, allow time for
participant questions, and reaffirm compensation procedures
(adapted from Rader et. al [68]; see supplementary ma-
terials [62]). To ensure question clarity and appropriate
terminology use, we co-designed interview questions with
three security analysts (with 6, 9, 10 years of professional
experience) from the authors’ personal contacts1. Under-
standability was further verified via pilot interviews with
two other security analysts. As no major changes to the
procedures or questions were made after the pilots, the
results of these two pilots are included in our results.
Recruitment. Participants were recruited over a nearly
one-year period (11/2021–9/2022) by advertising our study
over various online channels including social media (e.g.,
Twitter) and dedicated security analyst groups and forums
(e.g., Reddit, LinkedIn groups). We also reached out to our
personal contacts in various organizations who then shared
the study information with their security teams. Finally,
we posted our recruiting message to Upwork, an online
freelance marketplace, to recruit security professionals. Our
recruitment methods match that of prior works [28], [39]–
[41], [45] and our experience echoed theirs: it is very diffi-
cult to recruit security analysts (or developers) for research
studies. Among these channels, we anecdotal found that
known contacts in different companies and Upwork were
most effective (Table 2). In total, we had N=18 qualified
participants complete the interview.

Similar to other qualitative studies (prior studies with
security analysts, which have 5–10 [40], [41], [43], [45]
or 10–20 [28], [39] participants), we do not attempt to
generalize our findings given our sample size, but instead
use our results to highly emerging themes and concepts.
To this end, we stopped recruiting once we noticed no new
concepts/themes around the perceptions of ML appearing in
the interviews (i.e., thematic saturation [69])2.
Data Analysis Method All interviews were transcribed
using a GDPR-compliant transcription service [70]. These
transcripts were then analyzed following an inductive the-
matic coding approach [69]. To establish an initial code-
book, two authors collaboratively analyzed 3 of the 18
interviews. The two authors then independently coded the
15 other interviews, calculating inter-rater reliability (IRR)
for the codes every 4 interviews. For each code, the IRR was

1. These three analysts were not interview participants.
2. We observe concept saturation of participants in terms of their overall

ML perceptions. While new roles/industries appeared as we interviewed
more users, they did not necessarily offer new perspectives/concepts.

calculated using Cohen’s-κ to account for chance agreement
during coding [71]. If high-agreement was not reached for
any variable (κ<0.8) during these 4 interviews, the coders
met to resolve disagreements, changed the codebook as nec-
essary, and applied changes to previously coded interviews.
As two of the codes did not reach high-agreement by the
end of the interviews, a third coder was brought on to
recode the first four interviews; high-agreement was then
reached. Ultimately, discovered disagreements were due to
multiple overlapping codes leading to difficulties in proper
assignments, and overlooked sections of the transcript. In
total, 5 rounds of independent coding occurred to reach an
IRR of κ >0.8 for reported codes. The final codebook and
κ values for each variable are in Appendix (Table 4–5).
Ethics and Data Protection. The study was approved
by our IRB. The informed consent was obtained during
the screening survey. Our study does not collect person-
ally identifiable information (PII) from the participants or
the name of their companies/organizations. Email addresses
were collected only during the study process for scheduling
the interview and making payments. After that, the email
addresses were not stored with the interview data. When we
transcribed the interviews, we further anonymized any men-
tioned names of individuals or organizations. On average,
participants spent 67 minutes completing both the survey
and the interview (63 minutes of which were the interview)
and were compensated $40 for their time ($36/hour).
Limitations. First, as a semi-structured interview, certain
follow-up questions may not have been asked in some inter-
view sessions, and the answers may not exhaustively cover
all the topics in the same depth. However, all interviews
have covered the main questions that are directly related to
our research questions. Second, there may exist concerns
of the participants not representing the entire population
of security professionals who interact with classification
tools. For instance, while we recruit participants from a
variety of professional and demographic backgrounds (Table
2 and 3), we do not recruit from EEA or mainland China,
nor do we fully represent all possible roles, industries, or
demographics. To alleviate this concern, we ensure proper
interpretation of our qualitative results; that is, we do not
attempt to generalize our findings. Instead, we focus on
finding diverse sets of views from various stakeholders to
present views that exist in the community. These results
can be used to inspire hypotheses in large-scale surveys
or focused studies around specific professional/demographic
factors in future work. Third, biases such as social desirabil-
ity and confirmation biases may affect some participants’
perspectives. We mitigate these by asking questions in a
neutral manner and asking the participant to consider and
speak to opposing viewpoints.

4. Result: Tool Usage (RQ1)
In this section, we start by describing the participants’

information and then discuss their usage of security classi-
fication tools. Due to the space limit, additional discussions
are presented in Appendix A.



ID Job Role Yrs Exp Sec. Knowledge Method Recruit.

P01 Pen. Tester 2 Offense Rules Contact
A02 Sec. Analyst 10 Defense + Offense ML Contact
A03 Sec. Analyst 2 Defense Both Upwork
E04 Sec. Engr. 3 Defense + Offense Rules Upwork
E05 Sec. Engr. 15 Defense + Offense Both Contact
E06 Sec. Engr. 1 Defense + Offense Rules Contact
D07 Developer 7 Defense Both Upwork
D08 Developer 2 Defense + Offense ML Twitter
R09 Researcher 5 Defense + Offense ML Upwork
R10 Researcher 5 Defense + Offense Both Upwork
R11 Researcher 2 Defense Both Contact
M12 Management 20 Defense Both Upwork
M13 Management 5 Defense Both Upwork
M14 Management 5 Defense ML Upwork
M15 Management 12 Defense + Offense Both Upwork
M16 Management 15 Defense + Offense Both Upwork
M17 Management 25 Defense + Offense Both Contact
M18 Management 32 Defense + Offense Rules Contact

TABLE 2: Participants Experience – Our sample contains
a diverse set of N=18 participants holding different roles and
experiences in the security industry. The “Method” column shows
the tools the participant is familiar with.

Participant Background and Demographics. As shown
in Table 2, we use the first letter of the participant ID to
indicate their job role. For example, participant eight was a
developer, so we use the ID “D08” when referencing this
participant. Note that this ID does not indicate the order in
time of their interviews but is grouped based roles.

Professionally, our participants consisted of a variety of
roles including first-level responders to active security alerts,
team leads for SOCs and incident response, academics who
contract with industry, and upper management in organi-
zations who produce tools and services for others. For the
ease of referencing, we classify them into six distinct roles
(Table 2) including pen tester (n=1), security analyst (n=2),
security engineer (n=3), developer (n=2), researcher (n=3),
and management (n=7). Demographically, participants come
from a variety of ethnic backgrounds and locations (Table
3). While our sample has a disproportionate number of
male participants, this is unfortunately consistent with the
disproportionate number of males in the field of computer
security [72]. Several prior publications have been unable
to recruit many female participants [73]–[75]. Future work
could investigate whether demographics have any effect on
the perceptions presented in this line of work.
ML is commonly used for security classification, but
needs to be in conjunction with other techniques. Most
participants (n=14) noted they have used or designed ma-
chine learning (ML) tools to classify security-related events.
Meanwhile, participants highlighted that other traditional
methods were also used instead of, or to complement, ML.
Most (n=14) reported using rule (or signature)-based meth-
ods and several (n=5) used manual analysis. Many partici-
pants (n=10) used ML and rule-based methods in conjunc-
tion with one another. In these cases, participants primarily
reported that each tool has its own advantages/disadvantages
that are supplemented by the other tool: “In industry, rule-
based system can cover over 90% detection and for the rest,
it is the job of machine learning models. They can capture
the patterns we human beings cannot see. . . ” (R11). How-

ever, several other participants (n=8) either solely interact
with rule-based methods (n=4) or ML-based methods (n=4).
While practitioners generally embrace the idea of ML-based
tools, some noted ML/AI is also “overhyped” and more
work is needed beyond just applying them: “Everybody’s
got AI. Tell me what else you have.” (M17)

5. Result: Perception of Tools (RQ2)

We asked participants about their perceptions of security
classification tools. The discussion is centered on ML and
rule-based methods. We found participants considered five
properties when evaluating classification tools: effectiveness,
usability, efficiency, adaptability, and security. An overview
of participants’ perceptions of ML and rule-based tools is
illustrated in Figure 1. In the following, we will use this
illustration to first discuss and compare the perceptions
under each property (§5.1–§5.5), and then we discuss the
interactions between properties (§5.6).

5.1. Effectiveness

Tool effectiveness refers to the ability to correctly clas-
sify security events under normal (non-adversarial) sce-
narios. Most participants reported effectiveness as a fac-
tor in their tool choice (n=10), e.g., with excessive false
positives or false negatives causing participants or their
customers to cease tool use. When considering ML and
rule-based tools’ effectiveness, participants perceived each
as having advantages (nML=15;nrules=9) and disadvantages
(nML=17;nrules=9) depending on the context of use.
ML is effective in identifying complex and subtle pat-
terns. ML was generally found effective at learning com-
plex patterns that are difficult for humans to discover or craft
rules for. D08 explained, “The only way you can detect that
kind of attacks is you have a system execution graph, and
you can find out the pattern. That’s where rule-based things
come up short. You cannot write rule for everything. But
pattern, yes, you can define a pattern for everything. That’s
why I think, inherently, pattern-based solution, the statisti-
cal solutions will outperform rule-based ones.” Participants
also noted that this ability to capture complex relationships
allows for subtle differences to be detected. For example,
R10 described the value of this subtle classification for
detecting unauthorized users: “You can try to characterize
the behavior of the user in background. How often are
they clicking? What are the touch dynamics? Which pages
are visited often? Etc. This is very characteristic to the
actual user. Even if the attacker steals your password, the
machine learning-based technique can differentiate between
the [attacker and] user.”
Rule-based methods are better when the behavior is
well-defined, which is common. In contrast, rule-based
methods were perceived effective at classification for static
or easily described situations. Despite this limitation, partic-
ipants believed many security tasks meet these restrictions.
Participants noted that string matching of known malware



Efficient to learn from data
Provide quick fixes
Data/computing efficient
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ML Rule

Robust against adversarial evasion
Robust against adversarial poisoning 
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Figure 1: Summary of Perceptions — We present an overview of how participants perceive ML- and rule-based classification tools
regarding five major properties.  =“general strength”, G#=“mixed”, #=“general weakness”. The five properties are not independent but
connected by two latent factors: “quality data” and “human expertise”. A discussion of their interactions is presented in §5.6.

signatures, searching for sensitive data with regex-patterns,
or finding maliciously-tampered applications with signatures
to be effective. R09 provided an example: “[If] we want to
actually find out whether an application’s header has being
tamped, for instance, you don’t need a machine learning.” In
these cases, participants often preferred rule-based methods,
noting that even if they were equally effective, rule-based
methods held other advantages due to their simplicity, such
as efficiency: “If you want to find evidence from a machine,
you don’t need machine learning. . . a rule-based technique
would be quicker, would be more efficient.” (R09)
ML is perceived to have more false positives, a major
downside When considering errors, participants noted
that ML held a tendency to produce false positives. In our
context, false positives refer to benign instances incorrectly
classified as malicious by the tools. Participants noted that
false positives were intolerable by end-users of the system
and thus essential to prevent: “If [customers] find out your
FP rates are annoyance or frustrating, [they’ll] immediately
throw it out...they’ll bring something else on.” (M17) For
ML-based methods, as they are designed to generalize, there
is tension between reducing false positives and capturing
more attacks. As R11 noted: “for machine learning sys-
tem, it is harder to control the FP rate while keeping as
[much] coverage as possible...if we want to keep that [false
positive] rates really low sometimes we will have to lose
many true positives.” In comparison, rule-based signatures
can be constructed highly specific to the intended targets,
which helps to control false positives. Further, as recent
work suggested, even if a rule triggers events beyond its
intended use, these are benign false positives as the rule is
operating as expected and it is relatively simple to handle
these issues over time [28].

While presenting prediction confidence can be a useful
way to offset some of this concern (which we discuss further
in §6), several participants noted that this is not true in
all contexts. Specifically, when the tool is used to inform
high-stakes decision making, as R10 explained, “Security
people get nervous when they see this is a thing with

72% confidence. Saying that in security situation makes me
nervous because you want to be right or you want to be
wrong, you don’t want to be 72% confident.”
ML may have less false negatives, but this is not a
primary factor for tool adoption. A key advantage of
ML, noted by the participants, is the ability to generalize
(to unseen data or events). Better generalizability can reduce
false negatives and capture more attacks. However, several
participants believed there is a limit to ML systems’ ability
to catch novel attacks, making its false negatives similar to
rule-based systems in practice. M17 described this practical
limit on ML: “I guess that would be the biggest issue, [if]
it completely misses something. When something new comes
out, you need a new model, you need new features, you need
retraining, you need samples, and this is the problem.”

Interestingly, while participants stated they would dis-
card a tool for high false positives, this was not true for false
negatives. Participants explained that false negatives exist
in all tools and could be discounted for two reasons. First,
some participants described mitigating false negatives by
using multiple tools to cover missed attacks. R11 described
this strategy, saying, “Most machine learning models are
one big important part of the whole. . . but we cannot only
rely on it alone. . . the best way to use them is to combine
them together making use of the strength of both [ML and
rule-based] methods.” Other participants explained that the
differences in false negative rate would not matter if an
adversary got into the system. “If we compare how much
they fail, signature-based systems fail as much as machine
learning systems, and vice versa. Because it’s the same case
once you get in. You have to just get in once.” (D08)
ML is not effective enough to use alone, and cannot
replace rule-based methods. A sentiment among several
participants (n=6) was that ML-based systems should not
be used alone. Participants reported that they were appre-
hensive about using ML-based classifiers alone especially in
automated setups and emphasized the need for a human-in-
the-loop: “We’d still be a little cautious about an automated
response that the machine learning thing would do. I’ve



read enough science fiction stuff that I don’t like automated
things. I want a human to be the final button pusher, so to
speak.” (M18) In addition, participants felt that rule-based
systems will still play an important role despite ML’s con-
tinuing progress,: “I think machine learning-based systems,
they will not replace the traditional deterministic solutions,
but they will compliment them.” (R10)

5.2. Usability

Usability refers to the ability to easily set up the tool,
understand its outputs, and use it to support downstream
tasks. Usability was mentioned by many participants (n=10)
as a factor for tool selection. Participants had varying per-
ceptions of tool usability. Overall, while some indicated that
ML tools were usable (n=4), the majority perceived them
to have poor usability (n=13). Conversely, while several
participants believed rule-based tools were usable (n=7), a
few still mentioned their usability problems (n=2). Usability
was discussed in two ways, i.e., tool setup/customization
and responding to tool outputs, with each method offering
strengths and weaknesses.
ML-based systems require both domain knowledge in
security and expertise in ML to customize. For initial
setup, participants considered ML and rule-based tools easy
to set up. As long as the data could be provided in a way to
work with standard toolkits, the procedure to set up a ML
system was straightforward. R10 noted, “[The outside of ML
is] very, very simple. So, you have a box, you have the inputs
here and get the out[put]. The inside is very complex, but
outside, very simple.” Similarly, rule-based systems often
come with predefined rule sets: “Most of the SIEM solutions
comes with the predefined use cases that you can use and
they’re pretty good.” (D07)

When customizing an ML or rule-based tool for a
particular environment, deep expertise is needed. Domain
expertise is needed to produce specific rules. However, ML
introduces an additional burden. Expertise in security is
necessary to tune the model, but deep ML expertise is also
required—a mix that is in short supply [76], [77]. D08
stated, “You need good people, who both understand the
security perspective and machine learning perspective. And
that workforce is not exactly very big.”
Reasoning ML output is difficult, leading to hurdles in
taking security remediation actions. When considering
how to respond to tool output, participants noted ML is poor
at “explaining” why it made an instance-specific decision.
With ML tools, participants noted challenges in responding
to an alert, contextualizing it within their system, and stop-
ping a threat. M17 explained, “ML for most people is like a
check engine light, something is wrong. . . Now I got to spend
time figuring it out. What [we are] looking for is actionable
information, which requires the context: What problem are
you in? What actions do you need to take?”
Rule-based output has inherent usability benefits, but
can also be difficult in practice Understanding rule-
base tools’ output was often regarded as simpler as there

is an inherent explanation based on the matched rule. E06
explained, “It is definitely easier in a rule-based system to
see a flag, and backtrack to the rule that caused the flag,
and to go through and check to see, okay, so this is the one
thing that caused the rule to be violated, whereas in an ML
scenario, it’s a lot harder to see why this was flagged and
this wasn’t.” However, as rule sets become more complex
and when rules are created by others—both are often true
in practice—, interpreting the reason the rule was triggered
and any explanation provided becomes challenging. For
example, M17 described often scrambling to find the rule
author to determine an alert’s meaning: “What they do is
they immediately resort to ‘Who wrote the signature?’, go
find him and ask him, what the hell did he write? We usually
find out from him, ‘Hey, what’s going on?’”
Debugging model errors is challenging for both ML and
rule-based systems. Understanding a tool’s output is also
important for debugging whether the output is actually cor-
rect. The ability to reason about tool behavior is important
for identifying and fixing errors. Again, the lack of explana-
tion in ML tools makes it difficult to understand its errors:
“The reason [why] statistical-algorithmic solutions are less
prevalent than signature-based solutions, in the market, is
people can’t explain it. Security is a sensitive application,
if something goes wrong and if you can’t explain it — no,
you don’t want to use that.” (D08)

Interestingly, rule-based systems were not perceived as
inherently better in the context of debugging, especially
when the rules are complex and created by people other
than the users. R11 described this difficulty, noting their
verification methods for their ML- and rule-based tools rely
on similar processes of testing with historical data because
of the complexity in both: “I would not say rule-based
is harder or machine learning-based is harder. . . for rule-
based systems, if someone wrote a Yara rule before to deter-
mine a certain structure of the web page is malicious, if I see
the same pattern. . . I need to check whether this Yara rule
brings some false positives and I need to check historical
data as well to see if there are any false positives there. . . For
machine learning models, it has the same problem. Given
that the machine learning model results also based on the
training dataset, which is our historical data, I also need to
do that - basically the same process.”

5.3. Efficiency

Efficiency refers to the ability to avoid wasting resources
(e.g., time, human efforts, data, computation power) to use
and maintain the tool. Efficiency was reported by several
participants (n=9) to be a factor when choosing the tools
they used. Both ML and rule-based methods were perceived
to be efficient by several participants (nML=6;nrules=4)
for certain aspects and inefficient by several participants
(nML=9;nrules=3) for others. For example, ML was per-
ceived to be efficient to make use of (or learn from) large
volumes of data (with computing resources). Rule-based
methods are efficient for quickly resolving problems.



ML can efficiently make use of large amounts of data.
With an increase in security events, some participants noted
they have moved toward ML models due to their efficiency
in handling large amounts of data. Rule-based systems, how-
ever, often require manual data analysis to produce heuris-
tics, which does not scale. For example, A02 explained, “The
amount of data that we see has exceeded the capability of
humans. So 20 years ago, maybe it is possible to do that
manually with the order of hundreds of alerts or megabyte
of data. But now it has grown exponentially to the order of
terabyte and hundred of thousand alerts per day. So manual
processing and based on heuristic is no longer tenable. . . we
found machine learning is a good tool for that.”
Rule-based systems can be fixed quicker. Participants
suggested errors in rule-based systems (both false-positive
and -negative) could be patched quicker. They might not
provide a long-lasting solution in more complex cases,
but participants found this efficiency particularly important
for urgent problems. R11 described using short-term rule
fixes to prevent novel threats before developing long-term
solutions: “Just that a simple rule may not be able to detect
a similar attacks, but as a fast solution, a rule-based system
is good enough.” Conversely, ML tools require significant
effort to retrain the model and resolve these errors. E06
described this problem saying, “When it does come to
patching those errors, you can always add another clause
to the rule. But if you want to patch an error in machine
learning, you’re going to need to come up with a lot of data
of that specific edge case and then add that to the training
pool and retrain in order to have that accounted for.”
Training ML models requires extensive computing re-
sources, which are not available to all users. Participants
noted that one of the factors allowing them to use ML tools
is the recent advancement and availability in computational
resources: “You have the humongous processing power in
order to process that data in no time.” (R09) But these
computational resources are not readily available to every-
one. This is especially true for training large models from
scratch. D08 described this limitation saying, “we don’t
have the compute to create sufficiently big models easily.
For example, Google, they can just dish out a couple of
million dollars for training something huge. As a smaller
company. . . [we] can’t give you $1 million for just computing
something. . . that’s financial issues.”

5.4. Adaptability

Adaptability refers to the ability to easily adjust the tool
to the current environment. This property is important to
support specific infrastructure or data and meet business
requirements. Additionally, participants explained the threat
landscape changes rapidly as adversaries adapt techniques to
circumvent mitigation, requiring regular adaptation of tools
over time. Several participants indicated that adaptability
impacts their choice of tool (n=5). Most participants who
mentioned adaptability perceived ML as adaptable (n=6),
while some participants also perceived rule-based systems

were adaptable (n=3). Only one participant mentioned a lack
of adaptability, specifically for ML tools (nML=1,nrules=0).
ML can be adapted to a new environment with sufficient
additional data. ML can be adapted to a particular
environment (e.g., an organization’s network) by retraining
the model with additional data from that environment, a
process known as “fine-tuning”. As long as data is available,
ML-systems can be quite readily adapted at a large-scale.
When asked whether their ML tool can detect malicious
network actions within different types of network configu-
rations, D08 responded, “Different kind of networks, can we
adopt them? Even at industrial scale? Yes.” Fine tuning is
even more pertinent for anomaly detection systems where a
baseline of normal behavior from an environment is required
for the tool to function. One participant noted that, in
practice, data availability can be a challenge: “Models, you
start looking into, no, I need more samples. There’s not
enough features. I need 1000 samples to do the retraining.
You start having concerns about fixing things.” (M17)
Rules can be adapted but require expertise and manual
efforts. In comparison, rules-based systems need to be
adapted to a new environment (or new attacks) manually.
This could be a challenge especially when the rules need
to be regularly updated. M17 estimated the lifetime of rules
saying, “Even the best people I’ve hired, their signature
would not last for more than 30 days to 90 days.” While
M17 did not expect an ML model would last much longer—
“at least 90 days to maybe 120 [days], to even 6 months”—,
they explained the key difference was that rule-based tools
require an “army of analysts” to update the rules.

5.5. Security

We discuss security primarily in the context of robust-
ness against adversarial attacks. Surprisingly, this was the
least discussed among the five properties. Few participants
reported classifier robustness against attacks as important
factor in tool choice (n=4), and they were concerned about
the lack of robustness in both ML and rule-based classifiers
(nML=3;nrules=5). Few participants considered neither tool
type robust against adversarial attacks (nML=2;nrules=0).
Evasion attacks against rule-based tools were perceived
as easier. While adversarial evasion was considered a risk
for both ML and rule-based systems, participants believed
the level of expertise needed to evade ML-based classifiers
was higher. R09 explained “Even script kiddies can bypass
a rule-based web attack detection technique, but if we talk
about machine learning techniques, it is smart enough to
thwart even advanced attacks, at times zero-day attacks as
well.” To evade ML tools, M14 noted that hackers need to
“understand the assumptions of neural networks and other
machine learning models. . . these are the mathematical as-
sumptions and here’s how you can go in and play around
so you can get around it.” While at least one participant
indicated they had heard of such an attack in carried out in
the wild, this level of expertise was perceived as more rare.
This echoes the hypothesis from a recent position paper [56]



that adversarial ML is not the most economically viable
evasion option for attackers.

Conversely, rule-based systems were considered often
less complex and easier for an attacker to infer the rule
scheme. R11 explained, “I think the biggest negative side is
that if attackers can send a lot of traffic and they can easily
find out what the rules we are using and can bypass it.”
Poisoning attacks are less of a concern for rule-based
systems. Participants recognized ML tools are vulnerable
to training-stage attacks such as poisoning. R09 said, “If
contamination happens right at the data preparation or data
training phase, then that’s even more dangerous, because
you’re not in the right fashion. So I guess that is one funda-
mental aspect as well.” In contrast, rules were perceived as
less vulnerable without the added entry point for poisoning
as they rely on analysts manually crafting rules.

5.6. Interaction Between Properties

The five properties discussed above are not independent–
instead, as illustrated in Figure 1, we observed underlying,
connecting latent factors. Specifically, we observed ML
tools were more dependent on data, while rules are more
dependent on human expertise.
ML tools are more dependent on quality data. Par-
ticipants regularly reported that ML tools’ performance de-
pended on the data’s representativeness and availability of
sufficient data to train models. Data quality was primar-
ily seen as affecting tool effectiveness by impacting ML
tools’ ability to identify subtle differences in complex data.
However, gathering sufficient data was seen as inefficient.
As reported by M18: “It took us a couple of years to get
the collection engines you know built up.” Participants also
noted that determining the right balance in this trade-off
between effectiveness and efficiency can be challenging.
D07 demonstrated the uncertainty of this decision when
discussing determining the right amount of initial data to
collect to establish a baseline for anomaly detection saying,
“The baseline creation was quite difficult. Even though
we set it for 30 days and that was more than what we
thought that it should be. Still maybe they could have
been improved.” Further, the challenge of data collection
is exacerbated when considering adaptability to changes to
the environment over time, as organizations must regularly
collect and retrain ML models. Perceptions of ML tools’
usability were also related to this data dependence. Because
of the focus on large data sets for defining tool behavior
over human expertise, participants perceived ML tools as
more challenging to reason about and therefore, less usable.
Finally, when considering security, ML tools were perceived
as uniquely susceptible to data poisoning attacks due to their
reliance on training data.

As depicted in Figure 1, certain properties of ML are
also dependent on human expertise. For example, domain
expertise is necessary to fine-tune/customize ML models
(adaptability), and interpret ML outputs (usability).
Rule-based tools were dependent on human exper-
tise. Rule-based systems were perceived to be depen-

dent on knowledgeable analysts (i.e., knowledgeable about
security and knowledgeable about the target environment).
D08 noted, “Signature based algorithm are basically relying
on domain expertise. You’re writing, ‘if this happens, then
do this or that’ . . . because you have seen those things
happening in the past.” To produce effective rules, analysts
must first invest time to learn about the environment and
attacker tactics, techniques, and procedures. E04 described
this learning process saying, “I got to know different things.
Initially, I had the knowledge what are sensitive ports, which
are attacked the most, or which ports are vulnerable. . . There
was a learning experience.” This was viewed negatively
with respect to usability by our participants due to the high
demand for expertise during setup. However, once sufficient
expertise is achieved, the rules can be easily understood and
adapted quickly—at least for short-term fixes—, to address
errors and security issues related to evasion attacks. While
these changes were perceived as relatively simple and effi-
cient generally, the reliance on skilled practitioners to make
these changes and the rapid shifting of the environment
makes rule-based systems inefficient overall.

Rules are still dependent on data but require strong
human interventions (Figure 1). For example, when updating
rules for a new environment (adaptability), analysts still need
to collect and analyze some data from the new environment
to craft and validate the rules.

6. Result: ML Explanation (RQ3)

After discussing the perceptions of ML and other tools,
we asked participants whether recently proposed ideas for
ML explanations would alleviate their held concerns, in
particular those related to usability (§5.2). For this discus-
sion, we utilized exemplar explanation methods including
highlighted features, prediction confidence, similar exam-
ples, and highlighted object history as probes to elicit their
opinions on the subject (see §3, Table 1).

We observed participants’ perceptions were partially
informed by experience. Several participants noted they
previously encountered some form of explanation method
providing additional context when using security classifica-
tion tools3, including highlighted features (n=3), prediction
confidence (n=7), similar examples (n=3), and highlighted
object history (n=4). Nearly all participants’ initial percep-
tions of each explanation method were positive, i.e., most
believed showing highlighted features (n=15), similar exam-
ples (n=16), prediction confidence (n=14), and highlighted
object history (n=16) would be helpful. However, even for
these positive participants, their perceptions were dependent
on their goals, the availability of addition information, and
the ability to overcome some common concerns. As such,
there were also participants (n=2) who believed none of
these methods could sufficiently address their need.

3. The explanation method can be discussed in the context of both
ML- and rule-based systems, depending on participants’ familiar tools. For
example, ML models usually provide prediction confidence as part of the
model. For rule-based systems, there are similar forms of explanation such
as “risk scores” (e.g., how much a value goes beyond a threshold).



In this section, we first discuss the tasks for which
participants envisioned using explanations (§6.1). Then, we
discuss how participants achieved these goals through dif-
ferent types of explanation schemes (§6.2 to §6.4). Finally,
we note participants’ potential concerns about explanations
(§6.5) as well as their suggestions (§6.6).

6.1. Goal of Explanation

Determine model correctness. Explanation methods are
designed to increase model transparency, allowing humans
to understand and verify model correctness. This was re-
ported by many participants as a goal of explanation (n=10),
with confidence and highlighted features thought to be used
by several participants (nhighlightF =7, nconfidence=6), and
highlighted object history and similar examples being used
by a few participants (nhighlightH=2,nsimilar=3).

Developers noted they would use the ability to deter-
mine if their model correctly learned the intended features,
security analysts noted that explanations would help in their
ability to determine how to follow-up with a particular
classification, or whether to follow up at all, and model
providers may find use in providing evidence of model
decisions and reasoning to customers: “When we show the
evidence, we can make our results more convincing.” (R11)
Understand security events. Many participants (n=9)
noted explanation methods can be used as an investigative
tool, supporting additional inferences about the security
event. Contrary to using an explanation method to inspect
the internals of a model, participants described using the
information given to further their understanding of the
external event detected. That is, the ML tool’s ability to
identify subtle differences would help point out patterns
the practitioners themselves might not notice, and provide
insight into important characteristics of the event if well
explained. M13 noted, “That would build my own mental
heuristic model. Because if the model is telling me that
this certain characteristic you need to be on the lookout
for, that will shape my actions.” Participants indicated that
highlighting features/object history (n=5) and similar ex-
amples (n=5) would be useful when seeking this further
understanding, but no participant mentioned this goal when
discussing prediction confidence.

Participants also noted several use cases. Security ana-
lysts noted that they would use such knowledge to inform
an investigation or update their perceptions of attacks. De-
velopers noted that they would use a better understanding
of attacks to build more effective detection systems.

6.2. Highlighting Important Information

Focusing on participant perceptions to specific explana-
tion types, we start by jointly discussing highlighted features
and highlighted object history. We group these two schemes
because both schemes involve highlighting important in-
stance information, allowing users to narrow their focus to
items that influenced classification decisions. Also, during

our interviews, participants often discussed the two schemes
in the same terms, and we thus present them together.

In general, participants found it helpful to be able to
attribute important features and history that influenced or
contributed to a classification decision. These explanations
were seen as helpful for both goals from §6.1 as they help
practitioners leverage domain expertise by focusing on the
most important elements of the data.
Compare expert reasoning with model reasoning. Us-
ing highlighted information, participants reported they com-
pare model reasoning with their own mental models in-
formed by domain expertise. This comparison can help
establish trust in a model or flag potential issues. D08 noted,
“[A] domain expert and machine learning expert, if we put
them together, they can say, ‘Okay, your network is learning
this, but it should not. Maybe we should focus on this.’ So
machine learning expert can say, ‘Okay, these are the wrong
features, what are the right features?’”

Other participants noted this comparison of their percep-
tions with model reasoning would help refine their knowl-
edge about the attack. R09 explained, “. . . it is actually going
to further apprise me about what’s happening in the network
and what’s happening on the Android application.”
Identifying and analyzing repeated patterns. Partici-
pants also noted that the highlighted information could help
them identify connections between events over time. A03
described the utility of this higher-level view of the data
saying, “If we continuously highlight a specific portion of a
specific kind of patterns, it means that we can analyze that
someone is trying repeatedly to do some bad thing[s] to our
organization. It will help us to detect it.”

6.3. Retrieval of Similar Examples

The ability to retrieve similar existing examples to the
target instance was found beneficial as they help place
the results in a broader context, allowing practitioners to
leverage prior experience to interpret ML outputs.
Compare against known/trusted historical data. Partic-
ipants noted that similar examples from a known historical
event can help to evaluate the ML model’s accuracy. For
instance, showing how a new example related to a well-
known trusted example helps practitioners verify whether
the model is working properly. P01, who was skeptical of
ML, noted these explanations could help increase their trust
of the model: “I think if they are similar, correct examples,
and it’s showing this is the same thing. . . I could quickly
assess information that says like, ‘this is how it works’, then
I’d be more comfortable.”

Participants also noted that similar examples can help
them quickly interpret new security events, by connecting
the results to a context already familiar to the practitioners.
M17 explained, “The guy [that] tried to get in once, he
was successful, he [may do] it to you twice. Chances are
those attacks are going to look similar.” This may further
speed up threat response as practitioners can find related
historical data indicating potential attacker follow-up actions



and previous, successful mitigation. However, this requires
a good understanding of the prior events and the ability to
contextualize the knowledge for the new event.
Compare different decisions for similar examples. Par-
ticipants found it beneficial to compare a model’s decisions
on similar examples to identify potential inconsistencies. On
one hand, the inconsistent decisions may indicate incorrect
functionality of the model. On the other, participants noted
that it may indicate previous events being misclassified or
previously undetected compromise. E04 gave the example,
“If the packets are the same, I would have to analyze it, why
was it bypassed earlier and why it hasn’t been bypassed
now? Is it related to the refinement of the model?. . . and
now, over a period of 15 days, it has enough data that the
[model] is classifying it as malicious. So, I would investigate
the earlier packet, as well, and the current packet.”
Filter by time and environment to show the most relevant
examples. Participants pointed out that not all similar
examples would be relevant to the practitioner. Instead, they
suggested time-bounding and/or environmentally-bounding
provided examples to ensure relevance. For time-bounding,
M17 noted that having this option would present examples
most relevant to ongoing attacker campaigns and recent se-
curity events: “If you can time bound it, that would definitely
help because again, new campaigns, they’re probably going
to be exhibiting behavior to campaigns within the last 90
to 120 days.” Environmental bounds would select examples
from a practitioner-determined environment, such as a seg-
ment of a network, a set of computers, or an organization:
“The most practical approach is nearest neighbors within
their context versus nearest neighbors of globally what’s
out there because that ended up being a larger population
and confused people.” (D07)

6.4. Confidence of Inference

Participants reported that having a metric expressing the
model’s decision confidence was helpful to understand the
correctness of the model and triage further actions. However,
it is not noted helpful to understand the security event taking
place (as it does not provide contextual information).
Understand model behavior and triaging responses.
Prediction confidence was used by participants to gain in-
sights into the model behaviors and prioritize their response.
Participants noted the confidence score could help set thresh-
olds for manually evaluating tool outputs. M13 noted, “That
would definitely help because then you could come up with
a policy that says, ‘anything below 70% certainty, we need
to do a manual investigation.’” M13 further explained that
this was particularly important to have when justifying deci-
sions to management, saying “that’s [prediction confidence]
something that’s pretty easy to communicate to business
people and other stakeholders who are usually the ones
that are responsible for risk management or owning the
risk.” Participants also indicated prediction confidence could
help assess model performance: “[Prediction confidence] is

another dimension to detect or to understand whether my
results [are] great or not.” (R10)

6.5. Concerns of Explanations

While participants found explanations valuable, some
noted concerns about introducing the proposed explanations
into their workflow. Ultimately, the concern was whether
explanation would save time or just create more work.
Unhelpful explanations. Participants noted explanations
may be too disconnected from practitioners’ workflows.
A02 cautioned, “There’s still a disconnect between what
the decision such an algorithm output and what the analyst
would do.” This is particularly important because analysts
do not generally act without first performing some manual
verification to verify results. M12 explained, “I have yet to
find a tool that you don’t need to investigate after something
[an alert]. I don’t know anyone who doesn’t investigate be-
fore reacting.” D08 further pointed out that the explanation’s
presentation is important. Explanations should be crafted to
help analysts without overloading them with information.
Wrong explanations can cause harm, consider adding
warnings. Another concern is incorrect explanations that
would lead analysts down the wrong path, wasting their
limited time and causing missed true attacks. E06 notes,
“If [the explanation] is wrong and causes them to say,
‘Oh, okay, so this was a false positive’, and then something
happened as a result...” A02 suggested that warning the user
for potential tool error may help mitigate this: “The user
needs to acknowledge that the machine can be wrong, and
the reasoning needs to be made transparent so the user can
see all of the inconsistencies in the signal that the machine
has to take in when it gives that reasoning.”

6.6. Participant Suggestions

Participants also made suggestions for current and future
explanation methods to meet their practical needs.
Guide actions to take in response to classification. Once
a security event is classified as malicious, one participant
noted that providing remedial advice via actionable next
steps would help in responding to threats. These remedial
steps could both help address long-term threats by assessing
whether previously used vulnerabilities are present, as well
as immediate threats, such as how to contain an ongoing
intrusion: “What are the IPs I need to block?. . . What ports
do I need to block so I can stop it laterally moving from
one machine to another?. . . Most people are looking for
immediate actionable information based on their situation
or stage of the kill chain.” (M17) However, this prescriptive
guidance should be provided with care. While explanations
provide additional context and leave decision-making to
practitioners, incorrect suggested actions could move the
system in a more harmful state. M17 explained this dilemma
saying, “If it’s a generalized explanation, that is kind of okay
to give, but you start giving actionable information. . . that’s
where it tends to be risky.”



Similarly, participants suggested including relevant con-
text about the identified vulnerability or threat to help guide
remedial actions. This could include malware capabilities,
potential motivations of associated actors, and any potential
or expected damage the attack might cause. M17 noted, “So
[analysts] are just looking for ‘tell me why.’ Explain to me,
again in that context of attack surface, who is attacking me?
Why is he attacking me? Is there a pattern? Is it random?
Is there somebody specific I should be worried about?”

Participants also suggested explanations might inform
subsequent actions by collecting, analyzing, and presenting
prior practitioner responses to similar events. E04 described
the value of this additional context saying, “[There are] 50
analysts are working in this environment, they are not pri-
oritizing these alerts, and they’re prioritizing these [other]
alerts. So you can set up three different levels for that
parameter, analyst preference, and you can set it up as
‘low’, ‘medium’, and ‘high’. And if I’m working, I would see
that this alert is coming, these are 50 experienced analysts
and they weren’t prioritizing this. So I would prefer going
something which is rated medium.”

However, one participant (M15) had some skepticism
regarding the addition of suggested remedial actions as they
may be redundant with existing playbooks. Playbooks lay
out predefined, and often pre-approved, actions for analysts
in response to a particular security event [78]. M15 ex-
plained that their SOC maintains a set of playbooks based
on the organization’s collective prior experience that is
regularly reviewed by leadership, limiting the value of, and
potentially conflicting with, suggestions provided by a tool.
Summary graphs/reports for business people – Putting
events together, not just instance by instance. Other
participants find value in summarized graphs and reports. In
addition to conveying information to less technically savvy
stakeholders such as new analysts or business executives,
graphics that help put attacks and affected users (spatial
aspect) on a visual timeline (temporal aspect) would help
inform their understanding: “Give them better visualization
tools. Any information they want to see, put it in context
with the respect of temporal line, which is timeline, what
happened, time difference and everything ... let’s call it user
space, timeline and user space ... And visualization will be
the most powerful aspect of making sense of that. If we can’t
make them visualize the information with proper context,
pretty much nothing will work.” (D08)
Provide high-level view of model history to understand
attacker behavior changes over time. One participant
noted that they would appreciate a global explanation on
how models are changed over time to understand on how
attackers are changing. For example, R11 explained: “the
malicious campaigns change from time to time. . . So for
machine [learning] models, what we have to do is to retrain
the model from time to time. But in the meanwhile, if we
can understand what has been changed, why has changed,
I think they will save our time a lot instead of just retraining
the model with the most recent dataset. . . that will help us
understand the chain of the malicious attack.”

Additional interface (and redaction) considerations.
Participants also suggested improvements for how expla-
nations could be presented to improve usability and also
privacy. This included changes that match typical design best
practices, including using natural language when specific
syntax can be hard to recall [79, pg. 332-337], allowing in-
teraction with the output (e.g., supporting data filtering) [80],
and showing explanations on-demand [81]. Participants also
suggested using distinctive visual summaries for common
information to reduce the amount of information presented
to users, avoiding information overload.

Participants also noted that privacy may be impacted
negatively through the presentation of internal system infor-
mation. M13, for instance, was concerned for possible intel-
lectual property (IP) leakage when presenting explanations
to customers. They noted that the ability to intentionally
withhold information in these explanations would improve
privacy: “The ability to redact certain things [would be
useful]...you’re not going to show your source code to
the customer. But you could show conceptually and allow
differentiated levels of access depending on what your trust
level is with that customer.”

7. Discussion and Conclusion

7.1. Interfacing ML and Rules

A main finding in §5.1 is that practitioners generally
believe ML tools are not effective enough to be used alone
and cannot replace rule-based methods. A main perceived
downside of ML is the difficulty to control false positives.
While rule-based methods are perceived to better control
false positives (after careful expert tuning), they also sac-
rifice on false negatives (§5.1), are easily evaded (§ 5.5),
require frequent updates (§5.4), and are highly dependent
on human expertise (§5.2). As a result, practitioners use
multiple tools in parallel to improve overall effectiveness.
Recommendation. Given this major need for effectively
using both ML and rule-based methods together in security
operations, we recognize a key gap in current research,
which is, how to do it. Figure 1 illustrates that ML and
rule-based methods’ strengths and weaknesses complement
each other, but it is unclear how to systematically integrate
the two approaches to maximize their collective strengths.

Instead of studying ML or rule-based methods in iso-
lation, research is needed to explore interfacing ML and
rules. For example, researchers have started to look at us-
ing statistical methods (e.g., ML) to automatically generate
rules [82]–[84]. This is likely a fruitful area for future work
as rules could offer a useful interface with ML that ana-
lysts are already familiar with. Specifically, analysts could
provide initial rule sets based on their expertise to guide
the ML’s search of the possible classification space. The
ML model would then take these rules and historical data
as input to identify additional rules that would be provided
back to the analyst for review. This process is similar to
recent work that has shown promise in the related area of



program synthesis [83], [85], [86]. Also, by using rules
as the foundation for this approach, analysts maintain the
power of rules (e.g., the ability to quickly remedy urgent
issues, reason about output, etc.), while, at the same time,
helping the ML learn and reaping its benefits.

Another example is a recent paper that uses “common
sense” (i.e., rules) to reduce misclassifications of ML [87]–
[89]. Using rules such as “a car moves faster than a pedes-
trian” or “ a person is usually vertically thinner than a car” to
regulate ML behaviors can help to reduce misclassifications
of ML, even in an adversarial environment [87]. While
these general ideas show the potential to deeply integrate
ML and rules, more work is needed to understand how to
systematically integrate them within the SOC context.

7.2. “Less Glamorous” ML Problems

ML tools’ effectiveness not only depends on the sys-
tem design for the main task (e.g., detecting attacks) but
also depends on a range of “less glamorous” supporting
tasks around data (§5.6). While data scarcity is a well-
recognized problem in general machine learning [90], [91],
recent work [7] reviewed this problem (from researchers’
perspectives) specifically for security-oriented ML applica-
tions. They pointed out the common data sampling biases
and label inaccuracy problems in existing model develop-
ment and evaluation pipelines. Contrasting with this work,
our study provides the industrial practitioners’ perspectives
which concern making operation-level decisions. For exam-
ple, instead of worrying about data scarcity, practitioners
are often overwhelmed by the large volume of data (e.g.,
network traces, system logs, alerts). They have expressed
challenges to determine how much data to collect, how long
to keep historical data (in what representation), and how to
assess the usefulness of data to current and future models.
It is unrealistic to keep all the historical (raw) data over
time, but historical data is valuable for a variety of reasons,
e.g., debug models (§5.2), generate explanations (§6.3), and
inform actions (§6.6). Meanwhile, as the attack landscape
is evolving, there is a need for continually collecting new
data to support model updating (§5.4).
Recommendation. Our recommendation is to further
investigate data issues in the context of SOC and IT security
by qualitatively and quantitatively studying practitioners’
perspectives. For example, a particular topic of interest is
why existing solutions (e.g., active learning [90], concept
drift detection [3], [92]) are not adopted to (or cannot
sufficiently) address data problems manifested in day-to-day
operations. These insights can help to inform the needed
properties or capabilities of new tools to support security
practitioners to make operation-level decisions. This may
involve innovating ways to recognize and reason (attacker or
benign) behavior changes to inform the timing and methods
for model updating, to identify important data to collect,
store, or label with minimized overhead, or to design new
training/updating methods to reduce the amount of data
needed. It may also be fruitful to solve the problem with
effective collaboration between human experts (who know

the problem space) and ML models (which can learn what
data and how much is needed for training/updating).

7.3. Use-driven Explanation

One of our main findings in §6 is that explanations need
to be tailored to specific security use cases and requirements
that differ from generic ML explanations. Specifically, ex-
planation methods are needed by practitioners not only to
(1) understand the classification model itself (e.g., verifying
correctness) but also (2) to provide context to understand
the detected security event (e.g., to inform further actions).
Existing research has been primarily focused on develop-
ing explanation techniques for goal-1 (understanding the
model) [19]–[21], [24], [50], [65], while the ML capability
to support goal-2 (providing context for security events) has
not been sufficiently explored. Further, participants demon-
strated concerns regarding ML tools’ utility when integrated
into their established workflows (e.g., conflicting with SOC
playbook procedures), and suggested additional information
and interaction needs not supported by current explanations.
Together, these results indicate a divide between general
ML/HCI academic (improving for goal-1) and security prac-
titioner perspectives of explanation needs (both goal-1 and
goal-2, with a focus on integration with existing workflows).
Recommendation. To better align explanation devel-
opment to practitioner needs, our recommendation is that
researchers should proactively engage target users (e.g.,
security analysts) when designing explanation methods for
security tasks. The evaluation of explanation methods should
consider users’ downstream tasks and evaluate whether the
explanation can save users’ time end-to-end.

Our work provides an initial step toward this goal,
synthesizing several practitioner explanation needs: (1) An
explanation scheme can provide helpful context for the
current event by identifying and highlighting similarities
with previously happened (known) events or/and explain
how similar previous events were handled. (2) It is desirable
if explanation schemes can provide actionable information
to support further actions for analysts (e.g., deciding which
IP/port to block, which server to shut down). (3) The pre-
sentation and interface of explanation schemes should be
customized to the local environment and support aggrega-
tion of events (e.g., using time-bound graphical or natural
language interfaces). (4) It is desirable if the explanation
engines can be interacted with and support queries from
analysts. Future work should build on this, leveraging exist-
ing expert interface design literature [81], [93]–[96], as well
as formative and summative interface assessments [97, pg.
271-275] with practitioners.
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Appendix A.
Additional Discussion and Concepts

A.1. Participants and Tool Usage

Defense vs. offense expertise. As described in §3, we
used a screening survey to identify qualified participants and
prioritized those of different roles and experiences to add to
the diversity of perspectives. While we initially recruited
both offensive and defense-oriented participants, we later
prioritized defense-oriented ones. This is due to several
interviews noting that classification tools were primarily
considered and used in defensive scenarios.
Use of security tools. Among the 18 participants, 16
self-reported as users/operators of security tools while 12
self-reported as developers/producers of such tools (10 hold
both roles). There is a range of tasks performed using
classification tools such as intrusion detection (n=7), threat
hunting (n=3), and vulnerability assessment (n=8). In ad-
dition to security operations, participants also noted other

Number of Participants 18

Gender:
Male 18

Age:
Mean 36
Standard Deviation 11.8

Education:
Secondary School (High school, German Gymnasium) 1
Bachelor’s Degree (B.A., B.S., B.Eng.) 3
Master’s Degree (M.A., M.S., M.Eng., MBA) 10
Other Doctoral Degrees (Ph.D., Ed.D.) 4

Location:
USA (8), Pakistan (4), Japan (2), Turkey (1), Qatar (1),
Canada (1), Malaysia (1)

Ethnicity∗:
East Asian (5), South Asian (5),
White or of European descent (5), Southeast Asian (3),
Middle Eastern (2), Black or of African descent (1),
Hispanic or Latino/a/x (1), Prefer not to disclose (1)

TABLE 3: Participant demographics — Aggregated demo-
graphics of our participants (∗multiple answers allowed).

operational tasks needed to manage or develop tools. Sev-
eral participants discussed developing the system (n=12),
(re)implementing tools for their environments (n=6), col-
lecting data for training (n=4), and maintaining the service
for others (n=4).
Tool opacity is a general concern. There were general
concerns about tool opacity which comes from two main
sources. First, opacity is caused by the use of third-party
tools. Among the n=16 self-reported users of the classifica-
tion tools, most of them (n=13) have used at least one tool
developed by others (regardless ML or rules), and there is
a lack of visibility into the tool’s internals to understand
how they work. Second, opacity is related to the difficulty
to reason/understand certain tools’ classification results, es-
pecially for ML. This aspect has been discussed in detail in
§5.2 and §6.

A.2. Perceptions of Tools

Relationship between the five properties of ML/rules.
Not too surprisingly, the five properties also influence one
another. For example, when updating the tool to handle new
threats (related to security and adaptability), the efficiency
of the tool affects its effectiveness. As mentioned in §5.3
and §5.4, practitioners prefer to write a new rule for a
quick, short-term fix, before developing long-term solutions.
Similarly, usability could affect efficiency, as E04 notes
that a tool that is harder to understand can lead to slower
responses: “If you have 20 alerts coming in an hour but it
wouldn’t specify what the issue is, you have to investigate
the packet every time. . . it would obviously be a headache
for the analyst.” Since we did not explicitly ask participants
about the relationships among properties, we keep this dis-
cussion brief.



Primary Code Subcode Freq. Description

Domain
(κ=1.00)

Finance 3 Organization specializes in finance-based domain.
Industrial Control Systems 1 Organization specializes in industrial control systems-based domain.
Education 4 Organization specializes in education-based domain.
Healthcare 1 Organization specializes in healthcare-based domain.
Government Research 1 Performs research in a governmental organization.
Managed IT 4 Manages IT services for other organizations.
Tool Development 2 Performs tool development for cybersecurity in other organizations.
Managed IT & Tool Development 2 Performs IT services & tool development for cybersecurity in other organizations.

Technical Tasks
(κ=0.89)

Compliance Audit 1 Performs audits of systems to ensure standards (GDPR, HIPAA, etc) compliance.
Hardware Management 1 Manages and monitors hardware devices (routers, links, etc).
Incident Response 8 Responding and mitigating a security event.
Reverse Engineering 3 Analyzing a suspected malware to determine its traits/behaviors.
Digital Forensics 3 Analyzing digital evidence such as logs or memory, to investigate a security event.
Threat Hunting 3 Preemptively searching for on-going security threats.
Integrate Security System 6 Integrating a security system with an existing infrastructure.
Manage IT Policies 3 Generating, updating, or enforcing IT policies.
Intrusion Detection 7 Automated monitoring of a network or a set of hosts to find security threats.
Vulnerability Assessment 8 Evaluating a system for vulnerabilities.
Threat Research 1 Understanding patterns in security threats and predicting new trends.
Curate Threat Database 1 Curating databases of security threats for future use.
Collect Data for Training 4 Collecting malware or exploits for training a model.
Maintain Model Service 4 Running, maintaining, and keeping a model up to date for clients to use.
Record Logs 3 Recording network or host-based logs for compliance, model training, etc.
Analyze Alerts 4 Verifying, assessing, and responding to alerts from classification tools.
Develop Tool 12 Developing a framework, model, or a ruleset for a security classification tool.

Non-Technical Tasks
(κ=0.83)

Client-Interaction/Sales 5 Holds a client-facing position that requires collaboration or sales.
Management 6 Manages a set of employees.
Pedagogy 4 Lectures/runs an academic course.
Cyber Security Awareness 4 Efforts to encourage better awareness of security threats and safe practices.
Write Reports 8 Creating reports, papers, or blogs to teach people about cybersecurity subject matter.
Report Incidents 1 Reporting cyber security incidents to law enforcement or government institutions.

Task Output Recipient
(κ=1.00)

General Public 4 An output to the general public.
Clients/Customers 6 An output to the clients/customers of a company.
Technical Position 4 An output to an information technology, SOC, or other technologically trained person.
Project Manager 1 An output to a direct project manager.
ISP 1 An output to an internet service provider.
Law/Government 1 An output to a division of law enforcement or local/federal government.

Classification Methods
(κ=0.86)

Rule-based Engine 14 Uses a manually crafted set of rules, patterns, or signatures to determine classification.
Machine Learning Engine 14 Uses data to train a machine learning model to determine classification.
Composite Engine 5 Uses rules-based and machine learning approaches to determine classification.
Manual Analysis 5 Uses learned knowledge and manual efforts to determine a classification.

Classification Output
(κ=1.00)

Malicious/Benign 14 Classifies a file, packet, behavior, etc as malicious or benign.
Anomalous 7 Classifies behavior as expected or anomalous.
Vulnerable 5 Classifies software as vulnerable.
Exploitation Likelihood 1 Classifies likelihood of exploitation for specific vulnerabilities.
Changed Integrity 1 Classifies files/software/data as having been modified.
High-risk/Sensitive Data 4 Classifies data as sensitive/high-risk.

Tool Output Recipient
(κ=1.00)

Information Technology 16 An IT, SOC, or generic security analysts receives the tool’s output.
Other Tool 1 Another tool receives the tool’s output.

Developer-Recipient Relation
(κ=1.00)

Internal 9 The tool was developed (significantly modified) by the same organization that uses it.
External 13 The tool was developed (significantly modified) by a different organization that uses it.

Positive Tool Perceptions
(κ=0.80)

Adaptable 8 Easy to be adjust to specific environments, or updates over time.
Secure 2 Works correctly under adversarial conditions or follows privacy/security compliance.
Effective 17 Classifies well based on some metric, can generalize, and can succeed in normal tasks.
Efficient 8 Requires few resources (time, data, computation) during implementation or production.
Usable 9 Requires little cognitive overhead and effort. Easy to understand and train/deploy.

Negative Tool Perceptions
(κ=0.81)

Not Adaptable 1 Difficult to adjust to specific environments, or updates over time.
Not Secure 7 Easy to bypass under adversarial conditions.
Not Effective 18 Does not work well under normal conditions due to FPs/FNs, poor generalization, etc.
Not Efficient 13 Requires many resources (time, data, computation) during implementation or production.
Not Usable 13 Requires much cognitive overhead and effort. Hard to understand and implement/deploy.

Classification Method
Factors (κ=0.83)

Adaptability 5 Ability to be updated temporally or to a specific environment.
Ease of Implementation 9 Ability to integrate the system into existing architecture, human expertise, and environment.
Security 4 Ability to withstand adversarial environments.
Effectiveness 10 Ability to classify well according under normal conditions.
Usability 10 Ability to understand, develop, and deploy classifier.
Efficiency 9 Required resources (money, time, data, computing resource).
Construction of Report 1 Ability to construct reports for managers and auditors.

TABLE 4: Interview codebook — We show the coded and related descriptions for our interview coding.



Primary Code Subcode Freq. Description

Which Method was
Verified (κ=1.00)

Machine Learning 15 Discussed a verification method for a machine learning-based classifier.
Rule-based 11 Discussed a verification method for a rule-based classifier.
Composite 2 Discussed a verification method for a composite classifier.

Verification Method
(κ=0.85)

Method in Composite 1 View which method(s) in the composite tool contribute to the detection.
Verify on Other Data 7 Provide data for other known classification or expected patterns.
Prediction Confidence 1 Use tool-provided prediction confidence.
Consistency of Multi-Methods 7 Correlate the results to multiple tools to determine classification.
Threat Intelligence Feed 5 Compare with reported malicious activity from other organizations.
Contact Tool Developers 1 Contact the tool developers to discuss the reason behind certain classifications.
Static/Dynamic Analysis 1 Perform static/dynamic analysis on suspicious files.
Undefined Manual Verification 10 Unspecific/vague notion of a manual analysis.
Search Online 1 Look up classification result online to determine meaning and likely accuracy.
Host-based Forensics 5 Analyze host-based forensics such as logs or memory.
Network-based Forensics 7 Analyze IP sources, traffic patterns/volume, or other packet info.
Matched Rule Analysis 3 Verify whether the matched rule is valid or what it implies.
Trust in Tool Developer 2 Determine validity based on placed trust in the tool developer.

Effect of Explanations
on ML Opinion (κ=1.00)

More Likely to Adopt 7 Explanations positively affect the adoption of machine learning-based classifiers.
Does Not Affect Adoption 3 Explanations have no effect on the adoption of machine learning-based classifiers.

Explanation Utility
(κ=0.83)

Helpful 18 Perceiving a particular explanation as helpful, in some or all cases.
Not Helpful 12 Perceiving a particular explanation as not helpful, in some or all cases.
Uncertain 4 Unsure whether an explanation would be helpful.

Used Explanation (κ=1.00) - 10 Has used an explanation in practice or has incorporated one into their tool.

Explanation: Positive
Perception (κ=0.85)

Understand Classified Object 10 Used to understand the classified object and related scenario.
Understand Model 9 Used to understand the model’s reliability, functionality, and patterns.
General Understanding 1 Used to provide an unspecified understanding of the situation .
Efficiency 10 Saves time, often by directing focus and presenting relevant info.
Security 1 Used to increase the robustness of the classifier or account for vulnerabilities.
Usability 2 Used to help simplify or reduce the effort required by analysts.

Explanation: Negative
Perception (κ=0.85)

No Understanding Provided 6 Doesn’t help provide an understanding of the scenario or the model.
Hard to Implement 2 The technique is difficult to add to the system.
Not Trustworthy 3 Lack of trust in the resulting explanation.
Not Efficient 3 The explanation would take a long time to parse by an end-user.
Not Applicable 2 Does not address the needs of the task.
Not Secure 1 Is not robust to adversarial attacks on the explanation.
Redundant 1 Information is provided via another vector already.

TABLE 5: Interview codebook — We show the coded and related descriptions for our interview coding.
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