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Abstract—We describe and release an open PE malware
dataset called BODMAS to facilitate research efforts in machine
learning based malware analysis. By closely examining existing
open PE malware datasets, we identified two missing capabilities
(i.e., recent/timestamped malware samples, and well-curated
family information), which have limited researchers’ ability to
study pressing issues such as concept drift and malware family
evolution. For these reasons, we release a new dataset to fill in the
gaps. The BODMAS dataset contains 57,293 malware samples and
77,142 benign samples collected from August 2019 to September
2020, with carefully curated family information (581 families).
We also perform a preliminary analysis to illustrate the impact
of concept drift and discuss how this dataset can help to facilitate
existing and future research efforts.

I. INTRODUCTION

Today, machine learning models (including deep neural
networks) are broadly applied in malware analysis tasks, by
researchers [30], [5], [11], [6] and antivirus vendors [1].

In this field of work, it is highly desirable to have public
datasets and open benchmarks. On one hand, these datasets
will be instrumental to facilitate new works to resolve open
challenges (e.g., adversarial machine learning, interpretation
techniques [28], [10]). On the other hand, public benchmarks
and datasets can help researchers to easily compare their
models and keep track of the progress as a community.

However, creating open malware datasets is highly chal-
lenging. For example, the authors of [5] have discussed
many of such challenges including legal restrictions, costs and
difficulty of labeling malware samples, and potential security
liabilities. In addition to these factors, another key challenge
is the dynamic evolving nature of malware (as well as benign
software) [20]. As new malware families and variants appear
over time, they constantly introduce changes to the underlying
data distribution. As a result, there is a constant need for
releasing new datasets and benchmarks over time.

Over the past decade, there were only a handful of open
PE malware datasets released to the research community [30].
Notable examples include Microsoft Malware Classification
Challenge dataset [24], Ember [5], UCSB Packed Malware
dataset [2], and a recent SOREL-20M dataset [11]. We have
summarized their key characteristics in Table I.
Our Dataset: BODMAS. While existing datasets have
been instrumental to researchers to develop, test, and compare
machine learning models, we have identified two missing
elements in existing datasets, which has limited researchers’
ability to perform temporal analysis on malware classifiers for

malware detection and family attribution. First, most datasets
mentioned above contain malware samples that appeared be-
tween 2017 to 2019. The data is slightly outdated to study
recent malware behaviors. Second, most existing datasets
do not contain well-curated family information. This limits
researchers’ ability to test learning-based family attribution
methods and analyze family evolution patterns.

For these reasons, we compile a new dataset, called
BODMAS, to complement existing datasets. Our dataset con-
tains 57,293 malware samples and 77,142 benign samples
(134,435 in total). The malware is randomly sampled each
month from a security company’s internal malware database,
from August 29, 2019, to September 30, 2020 (one year).
For each sample, we include both the original PE binary as
well as a pre-extracted feature vector that shares the same
format with existing datasets such as Ember [5] and SOREL-
20M [11]. Researchers could easily combine our dataset with
existing ones to use them together. More importantly, our
dataset provides well-curated family labels (curated by security
analysts) covering 581 malware families. The family label
information is much richer than existing datasets (e.g., the
Microsoft dataset [24] only has 9 families).
Preliminary Analysis. In this paper, we use our dataset
(and existing datasets) to perform a preliminary analysis on
the impact of concept drift (where the testing set distribution
shifts away from the training set [8]) on binary malware
classifiers and multi-class family attribution methods. We
illustrate the impact of concept drift on different learning tasks.
In particular, we highlight the challenges introduced by the
arrival of previously unseen malware families, which have
contributed to increasing false negatives of binary malware
classifiers and crippled malware family classifiers in an “open-
world” setting. In the end, we discuss the open questions
related to our observations and how BODMAS could help to
facilitate future research in our community.
Contributions. Our contributions are:

• First, we worked with a security company to release an
open PE malware dataset that contains recent (2019–
2020), timestamped malware and benign samples with
well-curated family information1.

• Second, using this dataset, we performed a preliminary
analysis of concept drift in binary malware classifiers and
experimented with some mitigation strategies.

1The dataset is available here: https://whyisyoung.github.io/BODMAS/



Dataset Malware Time Family # Families # Samples # Benign # Malware Malware
Binaries

Feature
Vectors

Microsoft N/A (Before 2015)  9 10,868 0 10,868 H# #
Ember 01/2017–12/2018 H# N/A 2,050,000 750,000 800,000 #  
UCSB-Packed 01/2017∗–03/2018 # N/A 341,445 109,030 232,415  #
SOREL-20M 01/2017–04/2019 # N/A 19,724,997 9,762,177 9,962,820   
BODMAS (Our) 08/2019–09/2020  581 134,435 77,142 57,293   

TABLE I: Public PE malware datasets. #=“not available”; H#=“partially available”,  =“available”. For Ember, we have combined Ember2017
and Ember2018 and removed the duplicated samples. In addition to benign and malware samples, there are 500,000 unlabeled samples in
the Ember dataset. ∗The vast majority of malware samples in UCSB-Packed fall within 2017–2018 (97.36%). Only a small portion (2.64%)
of malware samples in a “wild-set” appeared before 2017.

• Third, we illustrated the challenges of malware family
attribution in an open-world setting over time, and dis-
cussed open challenges.

II. BACKGROUND AND RELATED WORK

Machine Learning for Malware Analysis. Machine learn-
ing (ML) has been applied to malware detection (classifying
malware from benign files) and malware categorization (clas-
sifying malware into different families) [30], [14], [9], [31].
Features used by ML models can be extracted by static analy-
sis (i.e., analyzing the file statically) [25], [21], [13], [17], [5],
[11] and dynamic analysis (i.e., observing run-time behavior
by executing the file) [22], [6], [23], [3], [32]. Static analysis
is more efficient, but its performance could be affected when a
binary is packed or obfuscated [2]. Dynamic analysis is costly
in terms of computing resources (e.g., sandboxes) and analysis
time. More importantly, today’s malware can probe the system
environment to detect the presence of sandbox and debugging
tools, and then stay dormant to evade detection [19]. In this
paper, we primarily focus on static features considering their
high efficiency to support large-scale analysis.
Benchmarks and Datasets. Compared to other ML applica-
tion domains (e.g., computer vision and natural language pro-
cessing), it is more difficult to create and share open malware
datasets. In addition to challenges such as legal restrictions,
cost/difficulty of labeling malware samples, potential security
liabilities, a more important challenge is the dynamic evolution
of malware [5]. Due to such dynamic changes, there is a
constant need for updating the datasets and benchmarks.

There are a few noticeable efforts to release PE malware
datasets. We summarize their key statistics and available data
fields in Table I. Microsoft Malware Classification Challenge
dataset [24] was released in 2015 which only contains 10K
malware samples. Note that the malware samples only contain
the hexadecimal representation of the binary but have no
header information. Also, it does not contain any benign files.
Ember [5] was released in 2017 and then updated in 2018.
Compared to the Microsoft dataset, Ember is much bigger
and also includes benign files (feature vectors). Later in 2020,
researchers from UCSB studied the impact of packed malware
on static classifiers, and released a dataset that contains
different types of packed malware samples [2]. Very recently
in December 2020, SOREL-20M [11] was released, a dataset
that was orders of magnitude bigger than existing ones.

Why A New Dataset? By inspecting the existing datasets
in Table I, we identified two major missing capabilities of ex-
isting datasets, and thus compile a new dataset to complement
existing ones.

First, most existing datasets contain malware samples that
appeared between 2017 to 2019 (including the most recently
released SOREL-20M [11]). The datasets can be slightly
outdated to study recent malware behaviors. As such, we want
to release a new malware dataset that covers malware samples
that appeared more recently from August 2019 to September
2020. Combined our dataset with existing datasets such as
Ember and SOREL-20M, researchers could have malware
samples span over three years to study malware evolution and
potential concept drift of classifiers.

Second, most existing datasets do not contain well-curated
family information. This has limited researchers’ ability to
study family-related problems. For example, the Microsoft
dataset only contains 9 malware families which is a very small
number. Datasets such as SOREL-20M and UCSB do not con-
tain family labels. For Ember, while it was released primarily
for binary malware classification, the dataset indeed contains
some family tags. However, a close inspection shows these
family tags are not curated. For instance, a popular malware
family tag in Ember is called “high” (8,417 samples), which
appears to be incorrectly parsed from VirusTotal reports. The
original field in the reports is “Malicious (High Confidence),”
which is not a real family name. For these reasons, we want to
include more malware families and well-curated family labels
in our new dataset to fill in the gaps.

III. DATASET DESCRIPTION

Our dataset includes 57,293 malware samples and 77,142
benign samples (134,435 in total). The malware samples are
randomly sampled each month from a security company’s
internal malware database. We performed the data collection
from August 29, 2019, to September 30, 2020. The benign
samples were collected from January 1, 2007, to September
30, 2020. Benign samples are also selected from the security
company’s database in order to represent benign PE binary
distribution in real world traffic. We name the dataset BODMAS.

For each malware sample, we include its SHA-256 hash,
the original PE binary, and a pre-extracted feature vector. For
each benign sample, we include its SHA-256 hash, and a pre-
extracted feature vector. Like existing datasets (e.g., Ember,
SOREL-20M), It is noted that due to copyright considerations



Phase # Samples Ember-GBDT (17–18) UCSB-GBDT (17–18) SOREL-GBDT (17–19) SOREL-DNN (17–19)
Benign Malware FPR F1 FPR F1 FPR F1 FPR F1

Validation - - 0.10% 98.62% 0.10% 92.14% 0.10% 98.79% 0.10% 98.01%
Test-10/19 3,925 4,549 0.00% 94.87% 0.03% 71.13% 0.09% 97.67% 0.31% 94.79%
Test-11/19 3,718 2,494 0.00% 95.83% 0.02% 81.04% 0.05% 98.09% 0.40% 96.20%
Test-12/19 6,120 4,039 0.01% 96.64% 0.06% 84.85% 0.24% 98.30% 0.45% 96.79%
Test-01/20 5,926 4,510 0.18% 93.69% 0.12% 78.04% 2.14% 96.31% 2.27% 95.41%
Test-02/20 3,703 4,269 0.07% 93.43% 0.33% 68.35% 4.82% 95.73% 6.68% 93.23%
Test-03/20 3,577 4,990 0.01% 95.75% 0.01% 75.30% 0.13% 98.14% 0.35% 95.98%
Test-04/20 5,201 4,640 0.00% 96.98% 0.02% 80.82% 0.14% 98.90% 0.26% 97.30%
Test-05/20 6,121 5,449 0.00% 97.50% 0.05% 85.69% 0.13% 98.64% 0.29% 96.03%
Test-06/20 8,182 4,217 0.01% 97.76% 0.04% 83.18% 0.22% 98.94% 0.43% 96.74%
Test-07/20 6,392 4,995 0.01% 96.38% 0.03% 66.20% 0.07% 98.68% 0.33% 93.86%
Test-08/20 2,514 3,823 0.01% 92.93% 0.02% 47.19% 0.06% 95.99% 0.10% 85.85%
Test-09/20 4,198 4,577 0.02% 92.14% 0.03% 55.97% 0.08% 95.70% 0.13% 82.88%

TABLE II: Testing the binary classifiers on each month of our BODMAS dataset. The testing F1 is typically lower than the validation F1,
indicating concept drift. We also include the number of testing samples in each month. Note that the validation sets are provided by each
of the classifiers’ original datasets, the sizes of which vary and thus are omitted from this table.

benign sample binaries are not included in the dataset. Our
feature vectors follow the same format of Ember [5] and
SOREL-20M [11]. In this way, researchers have the option
to analyze the original malware binaries. They can also use
our feature vectors that are compatible with existing datasets.

In this dataset, we provide the ground-truth label (“mal-
ware” or “benign”), curated malware family information, and
the first-seen time of a sample based on VirusTotal reports [1].
The family label is obtained mostly by analyzing verdicts from
multiple antivirus vendors with in-house scripts (similar as
AVClass [26]). The in-house scripts are constantly curated and
updated by our threat team. A small portion (about 1%) of
malware were labeled via manual analysis of the binaries. In
total, the dataset covers 581 malware families.

These malware samples are from a diverse set of malware
categories (14 categories in total). The most prevalent cate-
gories are Trojan (29,972 samples), Worm (16,697 samples),
Backdoor (7,331 samples), Downloader (1,031 samples), and
Ransomware (821 samples).

IV. CONCEPT DRIFT IN BINARY CLASSIFICATION

With this dataset, we now perform a preliminary analysis to
study the impact of concept drift on malware classifiers. We
first focus on binary malware classifiers in this current section.
We will perform the corresponding analysis for multi-class
malware family classifiers later in Section V.

A. Concept Drift Across Different Datasets

To examine potential concept drift, an intuitive way is to
apply classifiers trained on existing (older) datasets to our
(newer) dataset. Presumably, the performance of a classifier
trained on older datasets would have some degradation when
evaluated on newer data due to distribution changes.
Experiment Setup. For Ember and UCSB datasets, we
randomly split the dataset for training and validation (80:20),
and train a Gradient Boosted Decision Tree (GBDT) classifier.
We use the same hyper-parameters adopted in Ember’s GBDT
implementation on Github [5]. For SOREL-20M, training a
classifier from scratch requires extensive computational re-
sources. Instead, we use their pre-trained GBDT model and

their deep neural network (DNN) model. We leverage their
validation set to tune the threshold of the false positive rate.

The testing sets are exclusively provided by our BODMAS
dataset. To show the trend over time, we divide our dataset
into 12 subsets based on time (one set for each month).
The size of each set varies from 6,212 to 12,399 samples.
Similar to previous works [5], [2], [11], we calculate the false
positive rate (FPR) to represent the number of benign samples
misclassified as “malicious”. We also report the commonly
used F1 score to compare the overall performance of each
classifier. To make sure the classifiers are practical, we always
control the false positive rate to a small number during training
(e.g., below 0.1%). As such, we do not report metrics such as
AUC (Area under the ROC Curve) that take consideration of
high-false-positive settings.
Impact of Concept Drift. We train each classifier with
5 random seeds (SOREL-20M also provided 5 pre-trained
models with 5 seeds). Then we report the average results. To
simulate a realistic scenario, we tune the classifiers to control
their false positive rate under 0.1% using their validation sets.
Table II shows the validation performance as well as the testing
performance over time.

For all these classifiers, we observe that all the classifiers
can achieve high F1 scores (under a 0.1% validation FPR) on
their own validation sets. When these classifiers are applied to
our testing sets (more recent data), most of them can maintain
the target FPR (except for a few occasional months). However,
the overall F1 is generally lower than the validation F1,
indicating potential concept drift. The higher FPR of certain
months also indicates potential drift of benign samples.

Not too surprisingly, the classifier trained on the UCSB
dataset shows the largest degradation. The reason is this
is a specialized dataset containing mostly packed/obfuscated
malware, and thus may not generalize well to our testing sam-
ples. Comparing the GBDT classifiers trained on SOREL-20M
and Ember, we find the SOREL-20M classifier (trained on a
much larger dataset) sustains better over time. Surprisingly,
the DNN trained on SOREL-20M performs slightly worse
than the GBDT classifier. Note that both classifiers are pre-
trained by the authors of SOREL-20M [11]. It is possible
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Fig. 1: The classifier is re-trained each month by cumulatively adding
1% of labeled data from each month to the original Ember dataset.
We tested three sampling strategies to select new samples for labeling.

DNN can perform better with extra efforts of fine-tuning.
Due to the recourse and time constraints, we directly used
their classifiers and did not fine-tune them on the 20 million
samples. Across all the classifiers, we observe the last two
testing months (August and September in 2020) have the
worst performance. Overall, the results confirm the impacts of
concept drift: classifiers trained on older data have degraded
performance on more recent data.

B. Mitigation Strategy 1: Incremental Retraining

To improve the classifier performance against concept drift,
we experiment with several directions. The first direction is to
label new samples and periodically retrain the classifier.
Experiment Setup. We test this strategy using the following
experiment. We choose the original Ember classifier trained
in Section IV-A as the Baseline. We did not use SOREL
classifiers as baselines because they are significantly more
expensive to retrain due to the size of their original training
set. Then for each testing month, we retrain the classifier by
adding 1% of newly labeled samples from the previous month.
We start this process from November 2019. For example, at
the beginning of November 2019, we sample 1% of data from
the previous month (October 2019) to assign labels. Then we
add the newly labeled samples to the training set to retrain the
classifier. This classifier is then tested on the data of November
2019. We continue this process by cumulatively adding 1%
newly labeled samples each month and retraining the classifier.
We have tested using 0.5% new labels, and the conclusion
stays the same (results are omitted for brevity).

Regarding the sampling strategies, we consider three
different methods: random, probability [12], and non-
conformity [16]. Random sampling means we select samples
(from the previous month) at random. The prediction proba-
bility method ranks unlabeled samples based on the current
classifier’s output probability (low probability samples are
ranked higher). Non-conformity metrics measure how much
a given sample deviates from the current data distribution
in a given class (malware/benign). Samples with higher non-
conformity are selected first.
Effectiveness of Incremental Retraining. The results are
shown in Figure 1. Using the original Ember classifier as the
baseline, we use the different sampling strategies to perform
periodic retraining each month. For each strategy, we report
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Fig. 2: Training with the first month of BODMAS (September 2019)
vs. the original Ember baseline.

the average results over 5 different random seeds. First, for
the baseline, we observe that its performance has some ups
and downs, which is consistent with that in Table II. Overall,
the performance is worse than its validation performance.
Second, with retraining, we can see clear improvements in
the classifier performance over time in comparison with the
baseline. By labeling just 1% of the samples each month, all
the F1 scores constantly surpass 97%. Comparing different
sampling methods, we find their performances are close (non-
conformity slightly outperforms the random strategy).

We also experimented with an even lower sampling rate,
i.e., 0.5%. Under a 0.5% sampling rate, all three methods can
boost the F1 score to 96% or higher for most of the months.
Overall, the results confirm that periodic retraining is a viable
strategy to mitigate the impact of concept drift.

C. Mitigation Strategy 2: Training with New Data

To mitigate the impact of concept drift, another strategy is to
train a new model using the more recent data alone. On one
hand, this approach could eliminate the impact of outdated
samples. On the other hand, training a new classifier from
scratch may require more extensive data labeling.
Experimental Setup. As a quick experiment, we use a
single month of data from our BODMAS to train a GBDT clas-
sifier. More specifically, we take all the samples that appeared
before October 1st, 2019 in BODMAS (roughly one-month of
malware samples) for the classifier training. Same as before,
we split the data into training and validation sets with an 80:20
ratio. During training, we control the FPR on the validation
set to be no higher than 0.1%. We then apply the classifier to
the rest of the months in BODMAS. For comparison, we use
the Ember classifier trained in Section IV-A as the Baseline.
Performance of the Newly Trained Classifier. Figure 2
shows the results. The newly trained classifier improves the
F1 score for all the testing months, compared with the original
classifier trained on Ember dataset. This confirms the benefit
of labeling new data to train a classifier from scratch. In
addition, we can still observe a slight downward trend of the
new classifier (which is trained on the first month of data of
BODMAS), indicating that concept drift still has an impact.
Sources of Errors. Although the newly trained classifier has
a higher F1 score, there are still errors. We next break down the
sources of errors in Table III. Recall that we used the validation
set to control the FPR to 0.1%. During the testing time, we



Testing
month FPR FNR Existing Family

FNR
Unseen Family

FNR
10/19 0.00% 4.77% 3.39% 43.04%
11/19 0.00% 3.97% 2.67% 35.35%
12/19 0.08% 1.71% 1.44% 16.67%
01/20 0.19% 2.99% 2.16% 26.97%
02/20 0.51% 3.14% 2.37% 26.28%
03/20 0.00% 4.17% 3.63% 19.76%
04/20 0.04% 2.74% 2.45% 8.05%
05/20 0.02% 3.52% 2.66% 9.38%
06/20 0.05% 2.56% 2.32% 6.27%
07/20 0.00% 5.49% 5.16% 6.80%
08/20 0.00% 5.65% 4.76% 15.56%
09/20 0.10% 7.23% 5.78% 16.35%

TABLE III: Breakdown of the sources of false negatives.
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Fig. 3: Top-K accuracy on all testing data, and Top-K accuracy on
known families only. The classifier is trained with N = 10 families in
the training set. The “upper bound (all)” line represents the maximum
possible accuracy of this classifier on each testing month.

observe that the FPR remains satisfying (i.e., no higher than
0.1%) for most of the months (except for January and February
in 2020). In the meantime, the false negative rate (FNR) is
much higher, ranging from 1.71% to 7.23%.

To further understand the source of FNR, we take advantage
of the malware family information in our BODMAS dataset.
For each testing month, we categorize the malware samples
into existing malware families (i.e., families that already exist
in the training set) and unseen families (i.e., newly appeared
families that do not exist in the training set). Table III shows
the false negative rate (FNR) for both types of families. We
observe that existing families indeed produce false negatives
(e.g., new malware variants from a known family), but the
FNR is kept within 6% across all 12 months. In comparison,
unseen families have much higher FNRs (as high as 43.04%).
This indicates that malware samples from new families are
more likely to be misclassified (as benign) by the classifier.

V. CONCEPT DRIFT IN MALWARE FAMILY ATTRIBUTION

Next, we move to the malware family attribution problem.
Traditionally, malware family attribution is done largely based
on signatures and rules (manually crafted by security analysts).
However, these signatures are often brittle, which can be easily
bypassed by slightly modified malware (i.e., variants from
the same family). Machine learning, with a better ability to
generalize, is considered a promising alternative to help with
malware family attribution.
Close-world vs. Open-world. Malware attribution is com-
monly formatted as a multi-class classification problem. Given
a dataset of N malware families, we split it into training and

testing sets. Both training and testing sets will contain samples
from all N families. In this close-world setting (where all the
testing families also appear in the training set), it is usually
easy to train an accurate classifier [29].

Malware family attribution is a much more challenging
problem when we change the setup to the open world. First,
the number of malware families N will be large and keeps
increasing over time. A large N will immediately increase
the difficulty of training an accurate multi-class classifier.
Second, the classifier will encounter malware samples from
previously unseen families (families that do not exist in the
training set). During the testing time, attributing such unseen-
family samples to any existing families will produce errors.
Instead, the classifier should have the ability to recognize
that the sample does not belong to any known families.This
requires the classifier to also solve an out-of-distribution
(OOD) detection problem.
Experiment Setup. We use our BODMAS dataset to run
a preliminary experiment for malware family attribution. As
we discussed in Section II, existing datasets lack well-curated
family information, and thus do not support our analysis. In
this experiment, we train a malware family classifier under a
closed-world setting (commonly assumed), and then test this
classifier in an open-world setting (reality).

The experiment setup is similar to that of Section IV-C. We
use the malware samples in the first month of BODMAS as
the training set to train a multi-class GBDT classifier. Then
we test the classifier in the remaining 12 months. Note this
experiment only considers malware data for family attribution.

To examine the impact of N (the number of malware
families in the training set), we trained a series of classifiers
by varying N (N = 5, 10, 20, 40, 60, 80, 100), using the same
hyper-parameters as Section IV-C.
Evaluation Metric. For multi-class classification problems,
classification accuracy is a commonly used evaluation metric.
Like other application domains (e.g., image classification),
we not only consider the top-1 accuracy but also the top-K
accuracy in our experiments. Top-K accuracy measures the
likelihood that the top-K predicted families contain a testing
sample’s true family. In practice, a high top-K accuracy has
its values. For example, certain malware families still share
common behaviors (or kill chain), which may require similar
interventions. Even if a classifier cannot perfectly attribute the
malware sample to the exact family, as long as the classifier
narrows it down to a small number of possible families, it can
help the defender to take meaningful actions.
Impact of Previously Unseen Testing Families. Recall
that we train a close-world classifier and test it in an open-
world setting. As an example, we first set N = 10 (10 training
families), and then test it with all the testing data in the
following 12 months. The results are shown in Figure 3.

In Figure 3, we report two types of accuracy. First, we
report the classification accuracy on all the testing data, which
includes malware families that are known in the training set
(i.e., the 10 training families) and families that are previously
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Fig. 4: The impact of the number of known malware families N in the training data.

unseen in the training set. Then, we also report the accuracy
on the known families only.

We have three observations from Figure 3. First, the classi-
fier performs reasonably well on known families. For example,
the top-2 and top-3 accuracy are all above 98%. The top-1
accuracy is lower but is still around 80% or higher. Second,
the classifier performs significantly worse if we consider all
the families in the testing set. The top-2 and top-3 accuracy
is around 20% to 60%. The errors are contributed largely by
the previously unseen families in the testing set from each
month. Figure 3 also shows a green line denoted as “upper
bound (all)”. This line represents the maximum accuracy that
this classifier could reach (even if it predicted all known
families perfectly). We observe that the top-2 (all) accuracy
is already close to this line. Overall, the result illustrates
that the previously unseen families significantly degrade the
performance of a close-world classifier.

Impact of Number of Training Families. To understand
the impact of N (the number of families in the training set), we
further plot Figure 4. We vary N and report the top-2 accuracy
for different classifiers. Figure 4a shows the top-2 accuracy on
known training families only, and Figure 4b shows the top-2
accuracy on all the testing families.

Figure 4a illustrates the impact of N on classifier training.
As we increase the number of training families (N ), the
testing performance on these families decreases. This confirms
that a large number of families will increase the training
difficulty of a multi-class classifier. For example, after N gets
to 40 training families, the top-2 accuracy on these families
is already dropped to 70% or lower for certain months. In
practice, it could be challenging to further scale up the number
of families for such a classifier.

For Figure 4a, we did a further inspection of the drop around
May–June 2021. We find the drop in likely caused by a family
called “sfone”. This family is under-trained as it only has 52
samples in the training set (September 2020). However, in
May and June, there was a temporary bursty arrival of “sfone”
malware (2,491 samples) which may contain new variants.

Figure 4b shows the top-2 accuracy on all of the testing
families. When we increase N , the overall testing accuracy is
getting better. This is because a larger N means more families
become “known” to the classifier during training. As such, the

impact of unseen families during testing is reduced. Another
important observation is that the overall testing accuracy has
a clear downward trend (i.e., the pattern of concept drift).
Again, this is because malware samples from unseen families
are accumulating over time. Many security products attempt
to address this problem by performing frequent (e.g., daily)
model updates. While that can alleviate the problem to some
degree, it still does not completely solve it. To address the
concept drift, we argue that an “open-world” classifier should
be trained to actively handle samples from previously unknown
families (i.e., OOD detection [33], [12], [18], [15]).

VI. DISCUSSION AND CONCLUSION

We release an open PE malware dataset BODMAS to the
research community. Our dataset complements existing PE
malware datasets, while offering new capabilities. First, we
include well-curated family information for a large number
of malware families (581). Second, we include more recent,
timestamped malware and benign samples (over one year
period) to support temporal analysis of malware classifiers.
Using this dataset, we performed preliminary analysis on the
impact of concept drift on both binary malware classifiers as
well as multi-class malware family classifiers.

Our analysis reveals many open challenges when we put
malware classifiers on the time axis. For binary classifiers,
the decision boundaries shift over time due to the arrival
of new malware families and malware mutation in known
families. For malware family attribution, we illustrate the
challenges in the “open-world” setting introduced by the scale
of the classification and malware family evolution. Finally,
related to malware families, we also lack tools to effectively
model the relationships of malware families (e.g., similarities,
hierarchical structures) to inform practical actions. Our dataset
can help to support more extensive future works to address
these problems.

The analysis in this paper is preliminary. We only examined
concept drift using empirical malware samples. Such organic
concept drift can be potentially amplified by adversarial
machine learning attacks [4], [28], [7]. For example, there are
recent works that jointly study adversarial machine learning
and OOD detection [27], but their experiments are limited to
image datasets. We believe our dataset can help to facilitate
future research efforts along with these directions.
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